Date:

Name:_____

SOLUTION for Pre-Calculus 11 HW 4.5 Discriminant Nature of the Roots $D = b^2 - 4ac$

1. Determine the nature of the roots [ie: Determine how many x-intercepts each quadratic equation has]

a) $x^2 + 5x + 6 = 0$	b) $12x^2 + 7x - 3 = 0$	c) $-2x^2 - 7x + 5 = 0$
d) $4x^2 = 13x - 8$	e) $x(7-8x) = 10$	f) $x(x+2) = 6 - (x-3)(2x+1)$

2. Solve each of the following inequalities:

b) $x^2 - 25 > 0$	c) $x(3-x) < 0$	
	b) $x^2 - 25 > 0$	b) $x^2 - 25 > 0$ c) $x(3-x) < 0$

3. Determine the value of "k" so that the equation has two equal roots:

b) $kx^2 + 4x + 1 = 0$	c) $0.5x^2 + 3kx + (3k - 4) = 0$
	b) $kx^2 + 4x + 1 = 0$

4. Determine the value of "k" so that the equation has two different roots:

a) $x^2 - kx + 12 = 0$	b) $kx^2 - kx + 1 = 0$	c) $x^2 - 4kx + (5k - 6) = 0$

5. Determine the value of "k" so that the equation has no real roots:

a) $x^2 - kx - 24 = 0$	b) $lx^2 - kx + 8 = 0$	c) $x^2 - 3kx - (3k - 8) = 0$

6. In order for a quadratic function to be factorable, what value must the discriminant be equal to? Explain:

7. If the quadratic equation $(x-2)^2 + k = 0$ has two distinct real roots, then what is the range of "k"? (Multiple choice, circle one) Justify your answer.

a) k > 2 b) k < 0 c) $k \le 0$ d) $k \le 4$